
 1

Transforming Functional Requirements and Risk
Information into Models for Analysis and Simulation

 Jane T. Malin David R. Throop Land Fleming Luis Flores
 NASA Johnson Space Center The Boeing Company Hernandez Engineering Lockheed Martin Space Operations
 2101 NASA Road 1 2100 Space Park Drive 17625 El Camino Real 2400 NASA Road 1
 Houston, TX 77058 Houston, TX 77058 Houston, TX 77058 Houston, TX 77058
 281 483-2046 281 460-8415 281 483-2055 281 333-6423
 jane.t.malin@nasa.gov david.r.throop@boeing.com land.d.fleming1@jsc.nasa.gov luis.flores@lmco.com

Abstract—1,2A method is presented for transforming
functional requirements into system-of-subsystems function
models. Text from requirements and risk tools is
transformed into simple semantic models. An ontology of
functions, entities and problems provides structure for the
transformation and for deriving functional models.
Functions, operands of functions and functional agents can
be captured. Generic hazards and vulnerabilities can be
identified for types of functions and operands. These
models are transformed into functional architectures of
connected subsystems. This approach permits application of
graph analysis and lightweight simulation to investigate the
effects of problems and countermeasures in scenarios. We
discuss a hazard identification tool and hybrid simulation
tool where these methods are being applied.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. MODEL-BASED HAZARD ANALYSIS......................1
3. MODELS FROM FUNCTIONAL REQUIREMENTS....2
4. EXAMPLE CASE ...3
6. CONCLUSIONS AND RECOMMENDATIONS6
ACKNOWLEDGEMENT...6
REFERENCES ...6
BIOGRAPHY ...7

1. INTRODUCTION

A task of conceptual design is to perform preliminary
analysis of the impacts of potential problems and risks on
system performance and operations, mission goals and
safety. Another task is to evaluate countermeasures and
influences on countermeasure effectiveness. It is a challenge
to accomplish these analyses early in design, with available
functional models. It is also challenging to produce models
that can be transformed into ones that are appropriate for
later stage analyses. We are exploring the development of
multi-use functional models that can be transformed into
functional architecture models for analysis and then
component-connection models for simulation. We present a
method for transforming functional requirements into

1 0-7803-8870-4/05/$20.00© 2005 IEEE
2 IEEEAC paper #1530, Version 3, updated December 20, 2004

function models. We have developed an ontology of
functions, entities and problems that provides structure for
functional decomposition nodes and functional models [1].
The nodes of the functional decomposition tree are
imperative sentences that are transformed into simple
semantic models. Functions, operands of functions and
functional agents can be captured. Generic hazards and
vulnerabilities can be identified for types of functions and
operands. A method is presented for transforming these
models into functional architectures of connected
subsystems. The functional models can support analysis of
both problem impacts and resource use. This supports early
analyses to predict the impacts of failures and problems in
system designs.

In this paper we first briefly review the model-based hazard
analysis work that is the context for developing methods for
transforming requirements into models. We next present an
overview of methods and tools for transforming
requirements and risk text into structured data objects, and
methods for deriving system-of-subsystems models. We
discuss the use of a parser and an ontology to achieve these
transformations. Finally, we discuss an example case, where
text from functional requirements, risks and
countermeasures is transformed and included in models.
The Models are then used to explore possible problem
impacts by analysis and simulation, and this leads to
redesign.

2. MODEL-BASED HAZARD ANALYSIS

We have been developing technology to aid early
identification of system problems that impact performance,
operations or safety [1]. We have automated analysis of
transmission paths for potential to propagate system threats
in operations, due to interactions among subsystems and
with resources (power, thermal, data). We have developed
an approach for automated analysis of effectiveness of
counteractions and mitigations, including redundant
systems, software and human operations.

The prototype Hazard Identification Tool (HIT) helps
engineers capture and integrate design information during

 2

conceptual design, top-down from the system level, with
emphasis on system functions and structure. Information
about functions, performance and risk can be used in graph
analysis and simulation to investigate hazard paths and
sequences. Analyses of operations scenarios can support
impact analysis for preliminary hazard analysis and hazard
and operability analysis (HAZOP) [2].

HIT provides vocabularies and library-based help for
identifying and analyzing system functions, threats and
counteractions. Usign knowledge acquisition forms, users
can select types of components and entities, functions and
problems from libraries. The libraries help engineers
consider potential problems and counteractions that are
associated with types of functions and entities. Component-
connection models of systems can be developed, using
libraries of models of generic components or subsystems.
These subsystem models can then be mapped to behavioral
models in the simulation tool.

HIT uses graph analysis of system models to help engineers
identify and script candidate accident scenarios for
simulation. By mapping HIT data to models in the
simulation tool, it is possible to simulate event sequences
during operations. The CONFIG hybrid modeling and
simulation tool includes a library of generic component
behavior models that is synchronized with the HIT
component library. These lightweight abstract behavioral
models include a broad variety of types of performance
problems and hazards [3,4].

For the libraries used in this project, we developed
ontologies to help classify and describe attributes associated
with classes of function verbs, entities, hazards,
vulnerabilities and counteractions. We used text parsing
and matching results from the Reconciler tool [5] to refine
these ontologies and map them to the space domain. We
parsed imperative sentences and classified terms from the
International Space Station (ISS) Reliability Block
Diagrams (RBDs) and from the ISS Flight and System data
books. We realized that we could reapply this method to
analyze text from requirements tools and risk analysis tools.
We could map information from the sentences into the
classes in the ontology. Then we could use these data
objects from the other tools to derive component-connection
models and populate them with risk and counteraction data.

3. MODELS FROM FUNCTIONAL REQUIREMENTS

We present a systematic method for transforming functional
requirements into function models and risk data into
problem and countermeasure data in HIT model subsystems
or components.

1. Acquire text from requirements tools and risk
tools.

2. Reconcile selected requirements text concerning
subsystems and their shift (send/receive/transfer)
or serve (provide-to/require-from) functions with
function and entity classes and attributes in the
HIT ontology.

3. Derive HIT component-connection model for
system-of-subsystems from the requirements
objects.

4. Reconcile selected risk and mitigation text for the
subsystems or components in the HIT model with
problem and countermeasure function classes and
attributes in the HIT ontology.

5. Enhance default hazard, vulnerability and
countermeasure data for HIT subsystems or
components by adding data from risk objects.

The nodes of functional decompositions such as the ISS
RBDs and text from requirements specification tools such
as SpecTRM [6] are imperative sentences (if the factual
statement forms were amended to include “shall”).
Examples include:

• "Power the radar."

• "Condition the cabin atmosphere."

• “The CDHC shall receive a compressed picture file
from the camera.”

• “The CDHC shall send the Telecommunication
Subsystem telemetry.”

The Reconciler tool is used to parse the sentences and
identify the function or service verb (e.g., send), the
operand of the verb (e.g., telemetry) and the destination/user
(e.g., Telecommunication Subsystem). Operands of
functions (usually the grammatical objects) and their
affected attributes are as important to capture as the services
(the grammatical verbs). The functional agent or server that
carries out the imperative can be identified if mentioned
(e.g., CDHC). The agent, if unspecified, can be given a
noun form of the verb (e.g., Power; Conditioner).

The resulting simple semantic models fill in available
attributes in classes in the ontology and can be used to
create a system model made up of instances of the identified
subsystems, transmitted entities and transmission paths or
connections. For systems where operands of functions
move among subsystems (e.g. assembly lines, fluid flow,
data transmission), these models can be transformed into
functional architectures. Figure 1 shows requirements text,
its transformation into a Requirements (function) model
instance, and the derived functional architecture.

 3

Figure 1 - Transforming requirement to element of model

The types and attributes in the HIT ontology of
functions, entities and problems provide the structure for
deriving functional models. For example, a Shift type of
function provides a structure for matching to agent,
operand, source, destination and path type, as well as other
attributes. The Shift type of function is a subtype of Place,
and its sibling types under Place are Hold and Arrange.
Shift subtypes include Send/Release, Receive, Shift-in-
place and Transfer.

The same parsing and matching strategy can be used with
text from risk tools such as DDP [7]. This has included use
of the hierarchical outline structure of the risk and
mitigation data to infer application of risk words up and
down the risk hierarchy. The Reconciler also extracts and
provides the link data between objectives, risks and
mitigations. The imported risk data can be used to enhance
default hazards and vulnerabilities from the libraries of
types of functions and operands. Figure 2 shows risk and
mitigation text and its transformation into problem and
countermeasure structures for use in the model. The
problem structure in Figure 2 uses a Function Problem type
from the problem ontology. The counteraction model is
based on a Replace type of function, which is a subtype of
Recover, which is a subtype of Counteract/preserve. The
sibling types of Replace under Recover are Restore and
Undo.

Figure 2 – Transforming risk and mitigation for the model

This approach provides an automated way to build and
expand functional and risk models. It enhances HIT support
for manual model building and risk capture by engineers.
The HIT combination of functional architecture and
embedded risk data also enables application of graph
analysis and abstract high-level behavior simulation to
identify and investigate the effects of problems and
countermeasures in scenarios.

4. EXAMPLE CASE

These capabilities are designed to support the following
type of scenario. In this scenario, the tools help the
designers collect and integrate data, build models and
explore their implications.

• Science spacecraft functional design by specialist
teams: Telecommunication, Power, Thermal Control,
Attitude Determination, Command and Data Handling…

• HIT system architecture models integrate information
from teams and HIT libraries. As versions are developed
and elaborated, more subsystems and risk
countermeasures are included.

• HIT analysis of threats, vulnerabilities and paths in the
system of subsystems finds new potential hazard
interactions that countermeasures do not handle.

• CONFIG abstract hybrid simulation details the events
the potential mishaps.

• Teams make design change: Enhance countermeasure
strategy to handle the discovered interactions.

• Information feeds back to risk and requirements tools.

The case that illustrates our approach is a generic spacecraft
that collects science data and transmits it to ground.
Redundancy management for transmission is the risk
mitigation that is the focus of this case. Autonomous fault
management has become an important concern in satellite
and spacecraft design [8].

We used requirements that had been independently
developed in the SpecTRM specification tool, which
focuses on software and transmission of commands and
data. We parsed and transformed the requirements with
Reconciler and derived an architecture model of the
spacecraft subsystems described in the requirements. Figure
3 shows example requirements and the derived model. The
Command and Data Handling Computer (CDHC) is the
conceptual center of this model.

 4

Figure 3 – SpecTRM Command and Data Handling Requirements (L) are Used to Derive Initial HIT Spacecraft Model (R)

Imported risk data (see Figure 2) indicates that the risk of
transmitter failure can be ameliorated by using redundant
transmitters in the design. A telecommunication designer
alters the model to focus on data transmission and the
redundancy strategy. The problem is elaborated to indicate
that the transmission failure can be activated by noise
generated by the failed transmitter. The controller design is
elaborated to respond to degraded data rate due to noise.
The engineer adds two types of memory and ground station
and associated connections. Some Power and Thermal
information becomes available and is incorporated in the
model. New types of power and heat connections are added.
The Thermal Control System model includes a hazard. It is
a source of electrical noise when on. The noise can be
carried by Power connections to Telecommunication
System transmitters. Figure 4 shows the state of the
architecture model at this point in design.

Then the engineer requests a static reachability analysis of
system interactions, to evaluate potential risks. The static
analysis first finds pairs of hazard sources and
corresponding functions or components that are vulnerable
to that hazard. Then the graph of the architecture model is
searched (in paths that could transmit the hazard), to find a
way that the hazard could reach the vulnerable entity.

A simplified version of the primary reachability rule is:

IF Component C1 is vulnerable to Entities of type E

 AND Component C2 is a source of and Entities of type E

 AND both C1 and C2 connect to paths of type P that can
carry Entities of type E

 AND there is a path P1 by which entities of type E can
reach C1 from C2

THEN a potential hazard exists

Figure 5 shows the results of the analysis of the spacecraft
model in Figure 4. It shows that external noise that can get
to the transmitters over power connections. Transmitter
redundancy would be an ineffective countermeasure for this
threat.

This information can also be used to develop a simulation
script for the abstract spacecraft model, to explore risk
interactions in operations and evaluate countermeasure
strategies. A CONFIG simulation model is automatically
derived from the HIT spacecraft model. The common
generic model types in HIT and CONFIG enable this
transformation. Figure 6 shows the derived simulation
model.

 5

Figure 4 – Revised Spacecraft Model Architecture

The transmitters in the simulation are modeled as Servers in
an abstract client/server model. These servers react to
overload (more than 1.0 normalized capacity) by slowing
the service rate (bandwidth). The Clients are science and
engineering memory, each requesting transmission rates of
0.4, with total load of 0.8, within the Server capacity limit.
Noise from the Thermal Control System can take up 0.3 of
normalized server capacity.

Figure 5 – Results of Spacecraft Reachability Analysis

Figure 6 – CONFIG Simulation Model of Spacecraft

In the simulation script, the system is powered up and the
Comm-Controller software state set to ON, starting data
transmission. Then Thermal System set to ON, generating
noise.

The event sequence in the simulation is summarized below.
1. Nominal Xmitter1 transmission rate is 0.8, the total
requested rate.

2. When TCS is turned ON, noise travels from TCS to
Xmitters via power connections and takes up 0.3 of
capacity.

3. Xmitter 1 is overloaded (total 1.1 “requested”), changing
transmitter data rate proportionally to 0.8/1.1 = 0.723 (too
slow).

4. Control software unsuccessfully tries to compensate by
switching to backup Xmitter2, but transmission rate is
unchanged.

5. Failure: Transmission is not completed in specified time.

The engineer updates the noise countermeasure to inhibit
operation of the Thermal Control System during
transmission. An example abstract control model with a new
inhibit mode is shown in Figure 7. Simulation can be used
again to evaluate this change.

This new information can be fed back into the risks and
requirements tools via a tool integration framework.

 6

Figure 7 – Control model with mode for external noise

6. CONCLUSIONS AND RECOMMENDATIONS

We have presented methods for transforming and
integrating requirements and risk data so that it can be used
in model-based analysis and simulation to explore system
interactions and evaluate mitigations. This will be important
for connecting a variety of tools that use different methods
for capturing system and software functions, architectures
and risks. We have shown how to use lightweight
simulation of operations in early analysis, to explore system
effects on risks and performance problems and impacts of
these problems on the system and subsystems. There is
much more to be done in this area. With these types of
analysis, consideration of system health management needs
can be an integral part of early design.

Currently, our requirements transformations focus on
information about functional architecture. The methods,
ontology and model library can be expanded to transform
and include more types of requirements data in the future.
The Reconciler approach should also make it possible to
incorporate data from failure modes, effects and criticality
analysis (FMECA) and software safety analysis [9] into the
models.

Lightweight simulation of system effects in operations, in
the context of functional hierarchies, should be applicable to
automating generation of event trees and fault trees. We
hope to further explore using the lightweight simulation
approach to help the developers of event trees and failure
effects analysis [10].

While exploring the spacecraft case, we discovered an
interesting ambiguity used by designers when considering
function, implementation, operation and behavior. We think
our tools can benefit from permitting this ambiguity, and we
have begun experimenting with providing linked functions,
operating modes and implementing agents.

In the future, sub-functions could be identified that are
services that prepare (and repair) participants in the
function: functional agent, operand, environment and
resources (supplies, energy, control). For example, the
Power agent (subsystem) may need services to supply it
with power, store the power and control the distribution.
The destination, the Radar, may need to be enabled to
receive power and cooled while powered.

In the future, we also want to further explore the interactive
use of generic risk and countermeasure information that can
be associated with entities in the HIT model library.
Defaults can be used to aid and automate the process of
enumerating and discovering hazards, vulnerabilities and
countermeasures for types of subsystems, components and
agents (human and software).

ACKNOWLEDGEMENT

This work has been funded by the System Reasoning and
Risk Management thrust area in the NASA Engineering for
Complex Systems program. Thanks to Steven Cornford and
Leila Meshkat for developing the generic spacecraft model
case that has guided this work. Thanks to Martin Feather
and Nancy Leveson and MIT graduate students for
providing requirements and risk data for the case study.

REFERENCES

[1] J. T. Malin, D. R. Throop, L. Fleming and L. Flores,
“Computer-Aided Identification of System Vulnerabilities
and Safeguards during Conceptual Design,” 2004 IEEE
Aerospace Conference Proceedings, March 6-13, 2004.

[2] D C. Hendershot, R. L. Post, P. F. Valerio, J. W. Vinson,
D. K. Lorenzo and D. A. Walker, "Putting the 'OP' Back
in ‘HAZOP’," MAINTECH South '98 Conference and
Exhibition, December 2-3, 1998.

[3] J. T. Malin, L. Fleming and D. R. Throop, “Predicting
System Accidents with Model Analysis during Hybrid
Simulation,” Proceedings of Business and Industry
Symposium, Advanced Simulation Technologies Confer.,
Simulation Councils, pp. 155-160. April 2002.

 [4] J. T. Malin, L. Fleming and D. R. Throop, “Hybrid
Modeling for Scenario-Based Evaluation of Failure
Effects in Advanced Hardware-Software Designs,”
Model-Based Validation of Intelligence, Technical Report
SS-01-04, AAAI Press, Menlo Park, CA, 2001.

 7

 [5] D. Throop, “Reconciler: Matching Terse English
Phrases,” Proceedings of 2004 Virtual Iron Bird
Workshop, NASA Ames Research Center, April, 2004.

 [6] M. Katahira and N. Leveson, “Use of SpecTRM in
Space Applications”, 19th International System Safety
Conference, Huntsville, Alabama, September 2001.

[7] S. L. Cornford, M. S. Feather, and K. A. Hicks, “DDP – A
Tool for Life-cycle Risk Management,” 2001 IEEE
Aerospace Conference Proceedings, March 2001.

[8] R. D. Coblin, “Fault Management in Communications
Satellites,” MILCOM ’99 Conference Proceedings, IEEE,
1999.

[9] N. Dulac and N. Leveson, “An Approach to Design for
Safety in Complex Systems,” Intl. Conference on System
Engineering (INCOSE '04), Toulouse, June 2004.

[10] D. R. Throop, J. T. Malin and L. Fleming. 2001.
“Automated Incremental Design FMEA,” 2001 IEEE
Aerospace Conference Proceedings, March 2001.

BIOGRAPHY

Jane T. Malin is Senior Technical
Assistant in the Intelligent Systems
Branch, Automation, Robotics and
Simulation Division, Engineering
Directorate, NASA Johnson Space
Center, where she has led intelligent
systems research and development
since 1984. She has led development
of the CONFIG hybrid simulation
tool. She has led research on
intelligent user interface and intelligent agents for control
of space systems, and on teamwork tools for anomaly
response teams. Her 1973 Ph.D. in Experimental
Psychology is from the University of Michigan.

David R. Throop has been an
Artificial Intelligence Specialist with
The Boeing Company since 1992.
He provides engineering software
support in the Intelligent Systems
Branch in the Automation, Robotics
and Simulation Division in the
Engineering Directorate at NASA
Johnson Space Center. He oversaw
development of FMEA modeling
software and its use for the International Space Station. His
1979 Bachelors of Chemical Engineering is from Georgia
Tech. His 1992 Ph.D. in Computer Science is from the
University of Texas, with a dissertation on Model Based
Diagnosis.

Land D. Fleming is a Computer
Systems Specialist supporting the
NASA Johnson Space Center
Automation, Robotics, and
Simulation Division since 1990. He
has been involved in both the
development of computer
simulation tools and their
application to space systems. His
1987 M. S. in Computer Science is
from De Paul University.

Luis Flores is a systems software
engineer supporting the NASA
Johnson Space Center Automation,
Robotics, and Simulation Division
since 1985. He has been involved
in design and development of
software using knowledge-based,
intelligent control and computer
simulation tools for space systems
applications. His 1967 Ph.D. in
Physics is from Texas A&M University.

